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Nonsymmetric spin models of
index 2 on association
schemes of small classes

Takuya Ikuta*

Koichiro Rinsaka*

Abstract
In this paper, we classify nonsymmetric spin models of index 2 on

nonsymmetric association schemes of class at most 5.

1 Introduction

Throughout this paper, let X be a non-empty finite set with n elements. We
denote by Mx(C) the full matrix ring with complex entries whose rows and
columns are indexed by the elements of X. Let C*=C — {0}. Then My
(C*) is a subset of Mx(C).

1.1 Definitions of spin model and association scheme

A spin model W& My (C*) is defined to be a matrix which satisfies two con-
ditions (type II and type III). Whenever we use the symbol W &€ My
(C*), the (x, y)-entry of W is denoted by W (x, y) for x, y€X. A type IT
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matrix on a finite set X is a matrix W& My(C*) which satisfies the type IT

condition :

reX ’

Let W_& M. (C*) be defined by W_(z, y) =W ((y, z) . Then the type II
condition is written as WW _ =mnl. Hence, if W is a type II matrix, then
W is non-singular with W '=n 'W .

A type II matrix WEMx(C*) is called a spin model if W satisfies the type
11T condition :

Z Wla, ) W(B ) _ W(a, 8)
=t Wy, ) Wa, ) Wy, B

(for all a, B, y=X)

(2)
for some nonzero real number D with DZ:n, which is independent of the
choice of @, 8, y&X. It is known that, under the type II condition, (2 ) is

equivalent to the following:

ZX W(a,vzgyﬁ%y 5D W<“D’VT()OZ/I;()7' B (or all a, B, yEX).
(3)

Setting B=7in (4),
Y A =DW (8. B). (4)

x Wi, )

Let R; (=0, 1, ..., d) be subsets of X X X with the property that

(i) R={(z, ) |zx=X]}.

(i) XXX=R,U...UR, RNR,=0if 17#].

(i) R'=Rys for some i =10, 1,...,d}, where R ={(x,v)| (g, 2)
ERi}.

(iv) For i, 7, k=10, 1, ..., d}, the number of z& X such that (z, z) €ER;
and (z, y) €R; is constant whenever (x, y) €R.. This constant is
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Nonsymmetric spin models of index 2 on association schemes of small classes
denoted by pk.
(v) py=pj for all 1, 7, k.
Such a configuration X= (X, {R}i-) is called a commutative association
scheme of class d on X. The non-negative integers pj are called the intersec-
tion numbers of X= (X, {R}i-).
The i-th adjacency matrix A,& My (C) of X= (X, {R}:i-,) is defined to be

the matrix whose rows and columns are indexed by the elements of X and

whose (z, y) entries are

1 if (z, y ER,
Az, y)= { .
0 otherwise.
A;is a (0, 1) matrix. The conditions (i), ..., (v) are equivalent to the next

@', ..., (iv)’, respectively:
()" Ao=I, the identity matrix.
(i)" Ao+ A, +...+A,=], the matrix whose entries are all 1.

(ii)" Ai=Av for some 1 €10, 1, ..., d}.
da
(V)" AiA= ) phA, for all i, 5.
k=0

("' AA=A A for all 4, §.

Let A be the subalgebra of Mx(C) spanned by the adjacency matrices
A, Ay, .. As A s a commutative algebra of dimA=d+1. A is called the
Bose-Mesner algebra of X=(X, {R}i-0).

Since A is semi-simple, there uniquely exists the set of the primitive
. 1 . .
idempotents {E:}i, where EOZZJ. So, {E}i, is the basis of A. Hence,
A has two good basis {AJ}i, and {E}i.. We define the first eigenmatrix

Pof X=(X, {R}.-,) by the transformation matrix such that
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(AoAl...Ad) - (EoElEd)P

Conversely, {EJ}i, is expressed by {A}i o as

(EoEl...Ed) :%(AoAh..Ad) Q

Q is called the second eigenmatrix of X= (X, {R}i-,). From these equa-
tions, we have
PQ=QP=nl.
We define the valency k. of R, and the multiplicity m; of X= (X, {R}i-o) by
ki=l{yeX](z, Y ER} | (xEX),
m;=dim Vi =rank £;,
where V; is the image of E; . V' — V. In general, we have
ki=PFyi, mi= Q...

Latter, we will use the next relations:

i Rz
e, (5)
kik; &1 -
pZ:TZO mz QHszQk ve (6)

1.2 Relations between spin models and association schemes

Let A be the Bose-Mesner algebra of a commutative association scheme

X= (X, {Ri}?fo) A duality of A is a linear map ¥ : A — A such that

Vi (A)=nA" for ASA, (7)
U (AB)=¥(A)o¥(B) for A, BEA. (8)
The next theorem is due to [13].
Theorem 1. Let WEM<(C*) be a spin model with modulus a. There is a

Bose-Mesner algebra A on X containing W, W_ with duality ¥ given by
W(A)=aW o(W(W_A)) (9)
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Nonsymmetric spin models of index 2 on association schemes of small classes
for all A= A.
By Theorem 1, a spin model W is expressed by the adjacency matrices of

A as follows:
d
W: ZtiAi, <1O)
i=0

for some t,=C* (1=0,...,d). Moreover, it is known that X= (X,
{(R}'») with a spin model W is self-dual (P=Q) using a duality ¥.

One of the examples of spin models is a Potts model, defined as follows.
Let X be a finite set with n elements, and let 7, J& Mx(C*) be the identity
matrix and the all 1’s matrix, respectively. Let # be a complex number sat-
isfying

(W+uD'=nif n>2
w'=1if n=1. (11)
Then a Potts model A, is defined as
A=u’l—u '(J-D.

As examples of spin models, we know only Potts models [14, 11], spin
models on finite abelian groups [3, 6], Jaeger’s Higman-Sims model [11],
Hadamard models [18, 13], non-symmetric Hadamard models [13], and
tensor products of these. Apart from spin models on finite abelian groups,
non-symmetric Hadamard models are essentially the only known family of
non-symmetric spin models.

If W is a spin model, then by [13, Proposition 2],

w'w =4, (12)
is a permutation matrix. The order of A, as a permutation is called the index
of the spin model . Note that W is symmetric iff w'w =1

A Hadamard matrix of order 7 is a square matrix A of size r with entries
=+ 1 satisfying HH "=/I. In [13], F. Jaeger and K. Nomura constructed non-
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symmeltric Hadamard models, which are spin models of index 2:
11 1 —1
R A, QEH
11 —1 1
W= , (13)
—1 1 T 1 1
REH ®A.
1 —1 11
where £ is a primitive 8-th root of unity, A,&Mx(C*) is a Potts model, and
He M (C*) is a Hadamard matrix.

Note that non-symmetric Hadamard models are a modification of the ear-

lier Hadamard models ([13], see also [13, Section 5]), defined by

1 1 1 —1
KA, RwH
/ 11 -1 1
— , (14)
1 -1 11
RwEH ®A,
—1 1 1 1
where w is a 4-th root of unity.
By [13, Proposition 3] we have the following:
Theorem 2. Let W be a spin model of index m. Then the following holds:
(i) there is a partition of X :
X:X()UX]U...UXm—l (15)
of equal sizes such that
W, p=n"Wy z) (vzEX, VyeX), (16)
where 1 is a primitive m-th root of unity.
d
(i) Write W= t;A; and Ai=Ay. Then ty=t,
=0
Now, we fix p& X, in (15). Then, we have a disjoint union of X with
X=R(p) UR(p) U...UR.(p). (17)
Since W', W '©.A by Theorem 1, we have W' W '=A,& A. Therefore,
in (17) there exists R,(p) such that |R.(p)|=1.
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Nonsymmetric spin models of index 2 on association schemes of small classes

Lemma 1. Let WEM(C*) be a spin model of index m=>2. Let A be the
Bose-Mesner algebra such that W& A with dimA=d-+1. Then we have
m<d-+1.

Proof. Since the order of A, is m, A, (i=0, ..., m—1) are all distinct. So
we have the assertion. Ul
Lemma 2. For any 110, ..., m—1}, there exists 7€ {0, ..., m—1} such
that

R:(p)CX.
Proof. For distinct 7,, /.= {0, ..., m—1}, assume that

R:(p) N X;,#0,

R:(p) NX,##0.
Then |ji—7.| <m—1.

Let zER.(p) N X, yER(p) N X, Then (p, x), (p, y) ER:. From

(10), we have

=W, 2)=W(p, .
From (16), we have

tr=n""W(x, p)=n "Wy, p).
Since (z, p), (y, p) ERv, we have W(x, p)=W(y, p). Therefore we

J1-J2

have " ?=1. This is a contradiction. ]
Lemma 3. For j >0, R; with R:(p) C X, is nonsymmetric.
Proof. Assume that R; is symmetric. Let x&R;(p). Then
(b, ) ER; < (z, p)ER.
We have t;= W (p, x) =W (x, p). On the other hand, by (16)
Wp, ©)=n "Wz, p).
So we have n “=1. This is a contradiction. ]

By [13, Proposition 7, Proposition 8], we have the following:

Theorem 3. The general form of spin models of index 2 is given by
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A A B -B
A A —-B B

W= . , with A,C symmelric, (18)
—B B C C

B -B" ¢ ¢
where rows and columns are parameterized by 4 blocks Y, Y., Vs, Y, of equal

sizes as a copy of Y. We set r=1Y|. Then, | X|=n=4r. Moreover, we have
0 7

A= . (19)

W& Mx(C*) is a spin model with loop variable 2D, where D2:7’, if and
only if the next (i) and (ii) hold.

(i) A, C are spin models with loop variable D and B is a type II matrix,

(ii) The next identities hold for all a, 8, yE Y :

Ae, By, B) B(a, B) (20)
=y B, CB, »Ba, 1)’

B(y, BBy, r) Cle, B)
S Ay DB(a,B)B(a,V)' 21)

In this paper, we prove the following:
Theorem 4. Let WE My(C*) be a spin model of index 2. Assume that W be-
longs to the Bose-Mesner algebra of X = (X , {Ri}f:o) with at most d <5. Then,
W is one of the following:
(i) A spin model on the cyclic group of order 4.
(ii) Non-symmetric Hadamard models,
(iii) In (18), A is a spin model on strongly-regular graph, B=1 'H, where
tis a primitive 8-th root of unity, and H is a Hadamard matrix of order

.
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Nonsymmetric spin models of index 2 on association schemes of small classes

1.3 Spin models of index 2 and association schemes

Throughout this subsection, we consider nonsymmetric spin model of index

2 on nonsymmetric association schemes of class d>5.

We decompose X X X into a diagonal block S, and a non-disgonal block

S, which satisfy Theorem 2(i) as follows:
Si= (XX Xo) U (X, X X)),
Si= (XX X)) U (X, X X,).
By (19), we have
AES..
For a fixed p& X,, we have
Xo=S(p) (Xl =27,
X=S( Xi|=2n.
Lemma 4. The number of R; containing in S, is even.
Proof. By Lemma 3,
RCS, < R/CS.

Hence, S, has even relations.

Lemma 5. Let Ril, Rizc So and qu:Rlz Then tiy = L.

Proof. Let x&R;,(p). Then, by the assumption
(p, ) ER;y < (z, p) ER,,.
Since A, C are symmetric,

=W, 2)=WI(x, p) =t

(22)

O

Next, we consider nonsymmetric association schemes of class d <5,

using Lem-mas 4, 5.

1.3.1 Case of d=2

Let W be a spin model of index 2 on a nonsymmetric association scheme
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X=(X, {R,, R, R.}). Then, by Lemma 4 and (22), we have a contradic-

tion.

1.3.2 Case of d=3
Let W be a spin model of index 2 on a nonsymmetric association scheme
X=(X, {R,, R, R, Rs}). Then, by suitable rearrangement of indices, by
Lemma 4 we may set

Si=R\UR,,

Si=R;URs.
By (22) we have k,=1. Then n=4. In [5], spin models with at most 7 ver-
tices are classified. We know that such a spin model is only the cyclic group

of order 4.

1.3.3 Case of d=4
Let W be a spin model of index 2 on a nonsymmetric association scheme
X= (X, {R, R, R, Rs, R} ). Then, by suitable rearrangement of indices,
by Lemma 4 and (22), we may set

Si=R\URUR, (k.=1)

Si=R.UR, (RI=R,).

Then
k1:27’* 1,
ki=k.,=r.

Since A in (18) takes the same non-diagonal entries, A is a Potts model.

Since B is a type II matrix, we have t,= — ;. We set B= tsﬁlH, where H is

a Hadamard matrix. So, W is a nonsymmetric Hadamard model.
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Nonsymmetric spin models of index 2 on association schemes of small classes
1.3.4 Case of d=5
Let W be a spin model of index 2 on a nonsymmetric association scheme
X= (X, {Ry, R, R, Rs, R\, Rs}). Then, by suitable rearrangement of indi-
ces, by Lemma 4 and (22), we have the next two possibilities:
Si=RUR\(k.=1),
{S]RZURHUR4UR5.
Si=R\UR UR,UR;(ks=1),
{SIRAJR(RZRQ.
The former leads us to a contradiction by [So(p) | =2 and |S.(p) | =4.
We consider the latter. If R?:Rz, then by Lemma 5 we have t,=1¢.. By
R, UR,, this case is reduced to d=4. Similarly, if R,, R. are symmetric and
ti=1,, then R\UR; is reduced to d=4. Therefore, we assume that R, R,
are symmetric and ¢,# t..

In what follows, we are mainly interested in the latter case, i.e.,

XXX:SOU51,
So:RoUR1UR2UR3(R|, R, Symmetric, ]C:;:l),
S]ZR/1UR5<R1T:R5>, <23>

5
W: ZLA;(Z}: to, A il‘z)
i=0

i=

Then we want to determine the general form of the adjacency matrices

{AJi-, with (23). Before that, we mention the general facts of (23).
Let T be a spin model of index 2. Assume that W belongs to the Bose-
Mesner algebra A=<A,, A, ..., A, with the next condition:
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XXX=S,US,
So= UL R(R; symmetric, kqs—2=1),
Si=R. \URJ(Ri=R.), (24)

d
W= t:Ai(te :=1o, Ly, ..., t s - distinct),
i=0

where A, » is given by the form (19). Then we have the following:
Lemma 6. Let W be a spin model of index 2 on a nonsymmetric association
schemes of class d with the condition (24). Then we have
ta1= —ta.
Proof. Since B is a type II matrix, B is covered by distinct values ¢, 1, t.. By
1=Rs 1UR4, we set B=1t, \H, H is a Hadamard matrix. Hence, #4 1
=—la U

Lemma 7. The adjacency matrices A, A are given by

I JtH  J-H
2 2
J—H J+H
2 2
A= , T , (25)
J—H'  J+H
2 2
J+H J-H'
L2 2 ]
r J—-H J+HT
2 2
J+H J-H
2 2 .
Ad— T T :Ad—|. <26)
J+H J-H
2 2
J—-H  J+H'
L2 2 ]
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Nonsymmetric spin models of index 2 on association schemes of small classes
Proof. 1t is immediate from (18) and Lemma 6.
Lemma 8. For i€ {1, ..., d—3} we have
AiAs=A.
Proof. By suitable rearrangement of indices, assume that
AAs 2=A,,
AsAa2=Ay

A2z+1Ad—2:A21—2(2£+2§d_3)-

Then, using AQ(Z =1, we have
A A, 2:A1,
A4Ad—2:A3,

Aoi2Aa 2= Az
From (24) and Lemma 6

d-3
Ad—2W:t0Ad—2+ Z tlAd*ZAithOAOAF td*lAd*2Ad*17td*1Ad*ZAd
i=1

=toAa 2+<l‘zA1+If1Az>+---+(tzzszzqufleulAzuz)
+t Aot ti 1 Ai—ta A,
r a—3
W =tAot+ ZtiAi+t0Ad 2t it 1 Aa—tiAa 1.
i=1

From (16)
W'=A0sW > (b= ) (A1 — A + ..+ (faer— L) (A — Asey)
=0.
Since A, ..., Au-» are all distinct, we have t,=1,, ..., ts-1="twu+. Thisis a
contradiction by Lemma 5. ]
Lemma 9. Let W be a spin model of index 2 on a nonsymmetric association
schemes of class d with the condition (24). Then, t.is a primitive 8-th root of
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unity.
Proof. Putting =7 in (21), we have
By, B
LHS= ) —(——~«
y;Y A <av y>
2
_ s
=y Ala, )
2 1
=ty
1ykZ:Yfé]' (a: y>
=Diyt..
RHS= D C(B, B)Z
B(a, B
t
=—D—  (by (4)).
t
Hence, we have ¢;= — 1. L]
Next, we determine the general form of A4.(i=1, ..., d—3). Then we

have the following:
Lemma 10. The adjacency matrices A;(i=1, ..., d—3) of a nonsymmetric
associ-ation scheme of class d with the condition (24). are given by

C G

C G

Ai:

where C;, F; are symmelric.

Proof. Since A: is symmetric, we firstly consider the next two cases:
0 C 0
c 0 0 G

Ai: or Ai: ,
0 F o0

176 (926)



Nonsymmetric spin models of index 2 on association schemes of small classes

where C,, C,, I, I, are symmetric. However, the both cases do not satisfy

Ai;A.—s=A;.. By Lemma 8, this is a contradiction. Therefore, we set

C G
C, Cs

T

F, F

A=

where C,, Cs, F\, F5 are symmetric. Then

_Cl Cz i 0 7 ] Cz Cl
C. G I 0 Cs Cr
AiAs 5= = =A,
F 0 7 F, R
70 I/ _Cl Cz ] CzT C3
I 0 C. G Ci G
AssAi= = ’ =A.
I F F F F
L I 0] F' F L F

From these, we have

C.=C,
Ci=0;,
1=C,,
C.=Cu.
Hence, we have the assertion. ]

Here, we return to the case (23). Let W be a spin model of index 2 on

a nonsym-metric association scheme of class 5 with the condition (23).

Then, by Lemmas 7, 10, {A.};-o are given by
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C
C

[C.

C.

C
C,

C,
C,

F
o

F
F

LR TEs s

(Cl, Fl :
F

F

(Co, Fs
F,

F
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symmetric),
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Nonsymmetric spin models of index 2 on association schemes of small classes

J—H  JtH]
2 2
J+H J-H
2 2
As= T T =A..
J+H  J-H
2 2
J-H' J+H'
2 2

Then, W with the condition (23) is given by

W:tvo+t1A1+t2A2+toA3+t4A4_t4A5 (tj:_1>

In (18), A is symmetric spin model. From the shape of {A}i, we have
A=t I+ 1Ci+ 1,0y,

and A=, C,, C,) is the Bose-Mesner algebra of a strongly regular graph.
Then we have the next first eigenmatrix P of Y= (Y, {I, C,, C.}) given by
to, t, t as follows:

Lemma 11. Let A be a symmetric spin model on a strongly regular graph
Y=Y, {I, Cy, C}), where I, C,, C,EM(C) are adjacency matrices. Let
A=t d+1Ci+t:.Cyo, where Lo, 1, L, are nonzero complex numbers. Then, the

first eigenmatrix P of Y is given by

t(ets +D(e—tot ) totet))  6(t+e)(tot) +D(t—1)]

Lt —1D (4 +e)

Al —tl(tftffl)
to(ti—1)
2 4 3
| ettt h(t—D et

L l‘o(tf*l)
tit, =€ {1, *1},
p =m0 e
eto(ti+¢)

(toti +1) (to— 1)

Lt —1D (4 +e)

L‘o(l‘f* D)

et (to—11)
L‘o(tf*l) J
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Moreover, P is self-dual.

Proof. The proof basically depends on the method of K. Nomura.
1 Xo Yo
P=|1 x Y.
1 x Yo
We have
2
sz‘j: 70i.0,
i=0

2
Zpi,fl‘i:D/l‘;l,
i=0

2
Y.bist; =D,
7=0

where r=D". For i< {1, 2} we have
1+.’I,‘1‘+yi:0,

D/
<t0t’> +hxi+y:=0,

A N @ Y
@UDQ+L+E 0.

From these we have

1 1 1
t*D/ t t :
g ! ‘oz [=0
LIPS W |
to tr
We set
1 1 1
*D/ t t
H= lo / 1 2
1o 1L
tU tl t2

180 (930)
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Nonsymmetric spin models of index 2 on association schemes of small classes
Then
H has non-trivial solutions <= detH=0.
detH=tt:it.(ti— 1) D't + (ty— ) (1 — 1) (b= t) t+ tu(t,— 1) D’
=totits(t— ) D' (t— 1) (t— 1)
=ttito(ti— 1) D't —totits(ti— ) D (114 1)t
+totito(ti— 1) D't
By Newton’s relations, we have
(to—1) (tr—12) (ta— 1)) = — Lotrt (11— tz)D/(tl +1.),
t(ti— 1) D' =totito(t,— ) D't
From the second equation, we have
Lt,=e= {1, —1}.
From the first equation, we have

D/: (to_ tl) Etotl_ G) :
eto(ti+e)

O
Using Pin Lemma 11, by (6) we calculate the intersection numbers p}; as
follows:
Lemma 12. The intersection numbers p;(i, 7, k=0,1,2) of Y= (Y,
{I, C\, C.}) with the first eigenmatrix P are given by the following:

pgozl,
pu=1,
1)3021,

i L(ets+1) (e—tot) (Lot et))
11—
to(ti—1D (4 +e)

P ot (et — D (bt + D (to— 1)
pll_ 2, 4 2 )
to(ti—1)
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o= hile—tot) (ot et) (ti—t)
11— P 5
ot —1)°
i et t) =) (Wt + 1)
12—
to(ti =1
i et (t+ Et?)(totl—"_E)(tt)tl_E)z
12— 2 4 2
to(t1_1>

e Lt (tots +1) (ta— 1)
20— 1
ti(ti—1) (t4 e

)

i Gt t) (ot D) (bt — 1) (totr +1)
Dn= 2 4 2
to(ti—1)

(to—t) (bt t0) (Lot +€) (l‘otf*€>
t(ti—1) '

Proof. The proof is based on the Mathematical software “Maple”:

)

5 ol

b

2

restart;

with(LinearAlgebra) : interface(rtablesize:infinity) :
P:= Matrix( [[1,tl*(e*t0"2+1)* (-t0*tl+e)* (£t1"3+e*t0)
/(e*t072* (t174-1) * (t1"2+e)),

—t1*(£0"2+e) * (L0*t173+1) * (£1-t0)/(£0"2* (t174-1)* (1" 2+e))],
[1,-t1*(t0"2*t1"2-1)/(t0*(t1"4-1)), (£t0*t1"3+1)*(t0-tl)/
(E0*(t174-1)) 1,

[1,-(e*t0"2*t1+t0* (£174-1)-e*t1"3) /(t0* (t1"4-1))
,e*tl* (t072-t172) / (t0* (£174-1))11 )

t2:=e/tl;E:= (t0-tl) * (t0*tl-e)/ (e*t0* (t1"2+e));
e:=-1;

for il from 1 to 3 do

for i2 from1 to 3 do

for i3 from 1 to 3 do

plil-1,i2-1,1i3-1]:=( P[1,11]1*P[1,i2]/(E*2) )
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Nonsymmetric spin models of index 2 on association schemes of small classes
*add ( (1/(P[1,y]l"2))*P[il,y]*P[i2,y]*P[i3,y], y=1..3);
od; od; od;
for il from 1 to 3 do
for i2 from 1 to 3 do
for i3 from 1 to 3 do
print( [i1-1,1i2-1,1i3-1], factor (p[il-1,i2-1,13-1]) );
od; od; od;

]

Using Lemma 12, we determine the intersection numbers pi (i, j, k=0,

..., b) of a nonsymmetric association scheme with (23). We set
ki =2k =2p},
ko =2k, =2pb,
ph=2p1,
ph=2p1,
bl=2pk,
pL=2p%.
Then, we have the following:

Lemma 13. The intersection numbers pi(i, 7, k=0,..,5) of a

nonsymmelric asso-ciation scheme with (23) are given by the following:
Ai=2k At 2p1 A+ 200 Au -2k As,
A A=2pL A +2pL A,
AAs=A,
AAi=k(Ait Ay,
Al As=ki(A+ Ay,
Ay=2ks Aot 20 Ai+2p0 As 2k A,
A As=A,,
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A A=k, (A + As),
Ay As=Fk,(A+As),
A=A,
As A= As,
AsAs=A,,

A?;goa+AﬁaAg,

A4A5:%(ZAU+A1+A2),

Ai:%(A1+Az+2A3).
Proof.

¢ G ¢ G
2 C1 Cl Cl Cl
A=
Fl Fl Fl
Fl Fl Fl

=2(k Aot ph A+ ph At kiAs).
e c. G
a|Coc c. G
r R F
F R F,
cC. CC,
,|CC: CC
FF,

FF,

FE FE
=2(plLAi+pLA).

A A=A, (by Lemma 8),
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J+H J—H]
2 2
c G J—-H J+H
c C 2 2
A1A4: T T
F R J-H J+H
R R 2 2
J+H J-H'
L 2 2 ]
N (J-H J+H' <]+HT J-H'
F1< > 2 ) A 2 2 )
J-H' | J+H' J+H | J-H'
_Fl<2+2)F'<2+2>
J+H J—H J—H J+H)\]
c1<2+2)c1<2+2)
J+H J-H J-H J+H
c1<2+2>01<2+2>

CiJ CJ 7 T
_ o e, 7T
R] FJ 7 7
F] FJ J 7
=ki(A+Ay).

AIASZ%(A4+A5) (similar to A, A4s),

=2k As+2ph A+ 2p% A+ 2k, Ay (similar to AD),
A, As=A,(by Lemma 8),
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A2A11:k2 (A4+A5) (Simﬂar to A]Aq),
Ay As=k, (A+ As) (similar to A4,

Ai:%(A.+Az+2A3) (by [13, p. 264]),
A4A5:%(2A0+A1+Az> (by [13, p. 264]),

Ai:%<Al+Az+2A3> (by [13, p. 264]).

Lemma 14. The Bose-Mesner algebra A with (23) has a duality
W(A)=t,W o(W(W_0A))

for all ME A. The matrix of ¥ in the basis {A;1i=0, ..., 5} is

1 ki ko 1 7 r
1 pu pu 1 0 0
le o b 1 0 0 |
1 ki ko 1 —r =7
1 0 0 —1 pu —pu
1 0 0 —1 —pu puJ
where
o 2t1(6t§j13(€*tofl)(to+ et
tL(ti—D @ +e)
. 2t,<z52+e3(tot?f})(toﬂl)
Lt —D @ +e)
21, (toti—1) (doti +1)
o to(ti—1)
20+ D (- 1)
R AC
e 2(€to+ti)(€—t0t1’
Lt —1)

186 (936)



Nonsymmetric spin models of index 2 on association schemes of small classes

o 2Et1(f0_t1)(to+t1)

Dn= 2 )
N to<t1_1>
L (tot,+1) (to— ”F
t(ti—1)
Proof. Let

W=tyAo+ 1A+ Aot oAt LA LA,
Then we have

W o=t, Aott, Avtt, Aoty At t, (A1— A

=t Aot b A Avt b At (As— A,

W' =t Aokt Aitt, Avtte At i Ai—t, A

V(A)=t,W o(W(W 0A4)) :

W oA, =1 A,
W(W 0A)=t, (tyAst 1At LA LA+ LA~ LA A,
=tts A+ A+t LA AT Lot AAs Tt LAA,
—t A A,

ke Aot <2%+%piz+ph>/h+ <%pf2+pf1>Az+k1Ag.
1 1 1

OWjO<W( WfoAl»Z<A0+totflz41+l‘ol‘271142+143+l‘0t47114,1 tot4 5)

<k A, +<2 +Ep:z+pu>
+<%p%z+pi>Az+k1A3>
1
to by
:k'leJFt <2 +*p12+p11>

L <t2p§2+pn>A kA,

By Lemma 12,

(937) 187



MRS B4R 34 5

2 2 —1 ti+1
A<2%+%pﬁph>:_ ntt =1 (ot + 1),
1 1

2 to(ti—1)
m<nz 2> 2(etot+ 1) (e— 104,
—\ —putpi)=— 1 .
by \ to(ti—1)

V(A =t,W o(W(W 0A,)) :

W 0A,=t, A,
W(W 0A)=t, (tyAvt+ 6 A+ 1A+t As+ 1A~ 1A As
=tots Attty AV As T A+ tot, AsAst+t, 1AL A,
—t, 1A A

o,
:k2A0+<%piz+p§z>A1+<2%+71p;2+p§2>A2+k2A3.
2 2 2
LW (W (W 0A)) = (Aut tty Ar+tots Ast As+ tots A= tots A5)
O<k2Au+<%pllz+p;2>Al
2
o o, P
+ 27+7p12+p22 A2+k2A3
i, ts
o to [ T 1
szAoﬂLT tfplﬁpzz A
bofoto L 2
+7<27+7p12+p22>A2+k2A3.
2 2

2

By Lemma 12,
ﬂ<t1p12+p;2>: 2<zozf+1><trzl>’

t\t to(ti—1)
; — 1) (t+t
ﬂ<2ﬂ+ipfz+p§2>: 2¢t, (Lo 41)( 0 1).
ts L2 I to(t1_1>

V(A =t W o(W(W_0A,)) :

WioAs — t(; IA 3y
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W(W 04 =t, (toAstti A+ 1 As+ o As+ LA — 1A As
:A3+ tl t;lA1A3+ tztoﬁlAzAs‘f’Aé‘f’ t4l‘071A3A4
_L‘JoﬂA:aAﬁ
:A3+LA1 +£A2+A1)+£A5_£A4
to to to to
LW (W (W 0A)) = (Aot tot: Ai+tots As+As +tots Ai—tots As)
O<A0+L1A1+£A2+A3+£Ar£144>
to to to to
=At+tA+A+A—A,—As.

V(A =16L,W o(W(W 0A)) :

W 0A,=—t, A,
W(W 0A)=—t, (iAot 6 A+ 6 As+ Lo As+ 1 Ai— 1A Al
= —tots "Av— it AV A~ ot AsAi— tot, A A A
+AAs

LW (W (W 0AD) = (Aot tot Av+ tots AstAs + tots Av—tots As)

O<7’A07 TA3+ <*£*£L*&£>A4

g bt Rt ket
=rdv—r4s t4<t4+ 2 1,2 t4>A4

+ﬂ<ﬂ+ﬂi+ﬁﬁ> A,
Ty \ L4 2t 2 1
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E(to*tl) (*t0t1+€>

:T(AO_A3)+ 7 2
tot4(t1 +E)

(A4_A5>.

V(As) =t W o(W(W 0Ay) -

W 0As= L lAs,
w( WioAs) = t[l(tvo‘F LA LA+ LA+t Ai— 1 As) As

- tol‘;lfla"_ t1t471141A5_ tQt;lfle\a"‘ tot471143A5+A4A5_A25

d L kit ket
=74, TA3+<Z’4+ 9 l’4+ 9 l’4>A4

to kl tl kz tz
+<h+ A m>A5'

LW oW (W _0A)) = (At tot, At tots Ast-As +tots A tots As)

to kit ko t
of rAy—rAs+ |+ -+ 22
<TAO TAa <t4 2 4 2 1 >A4

+<&+&ﬁ+&jﬁm>
e 2 L 2 U

SR 1 (L TR TR SN O 7
77’Ao TA?, t4<t4+ 2 t4+ 2 t4>A4

+ﬁ(&+ﬁﬁ+ﬁlﬁm
t\ U 2 4 2 4

e(ty—t) (—tili+¢)
tot: (4 +6€)

=7r(A;—As) — (A,—As).

We now show that ¥ is a duality.

Checking (7), i.e., @ (M) =4rM " for every ME A, amounts to checking
that P =4rR , Where R is the matrix of the transposition operator in the
basis {A:[¢=0, ..., 5}. This is an easy computation.

To verify (8), we shall check that ¥(A4,4,) =¥ (A.)oW(A)) for i, jE
{0, ..., 5}. To check this, we use the Mathematical Software “Maple”:
restart;
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with (LinearAlgebra) : interface (rtablesize=infinity):
PP := Matrix( [

[1,

tl*(e*t072+41) *(-t0*tl+e) *(t1"3+e*t0)/(e*t0"2* (t174-1) *
(t172+e)),

-tl1* (£t07"2+e) * (£t0*t1"3+1) * (£t1-t0) / (t0"2* (£t174-1) * (t1"2
te)) ],

[1,-t1*(t07"2*t1"2-1)/(t0*(t1"4-1)), (£0O*t1"3+1)*(t0-tl)/
(E0*(t174-1))1,

[1,-(e*t0"2*t1+t0* (t174-1)-e*t1"3)/ (t0* (t1"4-1)),
e*tl* (t072-t172)/(t0*(t174-1))11);
t2:=e/tl;E:=(t0-tl)* (t0*tl-e)/ (e*t0* (t1"24+e));
e:=-1;

for il from 1 to 3 do

for i2 from 1 to 3 do

for i3 from 1l to 3 do

pplil-1,1i2-1,1i3-1]:=

(PP[1,i1]1*PP[1,12]/(E"2) )

*add( (1/( PP[1,y]"2 ))*PP[il,y]*PP[12,y]*PP[i3,v], v=
1..3);

od; od; od;

pll:=factor( t0/tl1*(2*t0/tl+2*pp[l,1,1]1+t2/t1*2*ppI1l,
2,11) )i

pl2:=factor ( t0/tl*(tl/t2*2*pp([l,2,1]+2*%pp[2,2,1]) );
p2l:=factor( t0/t2* (2*pp[l,1,2]+t2/tl1*2*pp[1,2,2]1) );
p22:=factor( t0/t2* (2*t0/t2+tl/t2*2*pp[l,2,2]1+2*ppI[2,
2,21) )7

td:=(1/2)*sqgrt (2)+(1/2*I) *sqrt (2);
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P:=Matrix ( [
[1,2*PP[1,2],2*PP[1,3],1,n,n],
[1,pll,p12,1,0,01],
[1,p21,p22,1,0,01,
[1,2*PP[1,2],2*PP[1,3],1,-n,-n],
[1,0,0,-1,t0/t4d* (t0/t4+PP[1,2]*tl/t4+PP[1,3]1*t2/t4),
-t0/td* (t0/t4+PP[1,2]1*t1l/t4+PP[1,3]1*t2/t4)],
[1,0,0,-1,-t0/t4* (t0/t4+PP[1,2]1*t1l/t4+PP[1,3]1*t2/t4),
t0/td* (t0/td4+PP[1,2]*t1l/t4+PP[1,3]1*t2/t4)]
1):
Q:=Matrix ( [
[1,2*PP[1,2],2*PP[1,3],1,n,n],
[1,pll,p1l2,1,0,0],
[1,p21,p22,1,0,01,
[1,2*pP[1,2],2*PP[1,3],1,-n,-n],
[1,0,0,-1,-t0/t4*(t0/t4+PP[1,2]*tl1/t4+PP[1,3]1*t2/t4),
t0/td* (t0/td4+PP[1,2]1*t1/t4+PP[1,3]1*t2/t4) ],
[1,0,0,-1,t0/t4* (t0/t4+PP[1,2]1*t1/t4+PP[1,3]1*t2/t4),
-t0/td4* (t0/t4+PP[1,2]*t1/t4+PP[1,3]*t2/t4)]
1):
n:=E"2; UU: =MatrixMatrixMultiply (P, Q) :
for il from 1 to 6 do
for i2 from il to 6 do
for 1 from 0 to 5 do
print( [i1-1,i2-1,1],
factor (P[1+1,1i1]*P[1+1,i2]-add(pt[il-1,1i2-1,k-1]*
P[1+1,k],k=1..6)));
end do;
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end do; end do;

Ul
Assume that p; ,#0. Define
puea, B. V=1 {yEX|(a, YER, (B, WER, (r, Y ERS |.
These numbers usually depend on the choice of a, 8, yEX. If pl
(a, B, ) is independent of the choice of @, B8, y&X, then an association
scheme is called a triply regular. Then (2) is written by

l

itj :D ta
Lk

Lty ’

(27)

1,7

d
Y. b, B
, k=

0
By Lemma 13, we have pi=k,#0. We want to determine pi(a, 8, 7).

Them, we have the following:

Lemma 15. Let au=Dp1s(a, B8, 1), ewy=Dpis(a, B, 7) be nonnegative inte-

gers. Then, for i, j, k€10, ..., 5}, pis(a, B, 7) are given by the following:

i|J| k| pisa, B
0141
11051
114 @
1 115 ph—am
k
1124 7§fawfl
k
1 2 5 pb*?lJFdasﬂLl
11341
ki
— asr 1
21114 9 Aap
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sk
20215 pir7+j*awﬁ1
115]1
4141 ew
’
4142 ?*eaﬁy
k
4151 j—eaﬁ,
r kl
4 5 2 2 2 +ea/i’7 1
4 1
4101
k
5041 71—%,9,
7 kl
51412 9 9 +ew—1
5151 ew
”
5 5 2 ?78(1,?7

Proof. In what follows, as a matter of convenience, we set
a=pusa, B, 7),
b=pis(a, B, 1),
c=pisa, B, 7),
d=pi(e, B, 7),
e=pusa, B, 7),
f=pisle, B, 7,
g=pis(a, B. 1),
h=pis(a, B, 7).
The procedure is as follows:

First step: Let ¢ be given in {0, ..., 5}. We consider the possibilities of
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j=10, ..., 5} such that pir#0. Next, we consider the possibilities of k&
{0, ..., 5} such that piw#0, pi#0.

Let t=0. Then j=1 and k=4.

Let i=1. Then =0, 1, 2,3, and k=4, 5. Then, pii:(a, B, v) are given

by using a, b as follows:

ik plia By
015]1

4| a
5|pi—a
410
5
4

pi—0b
1

el e e
W N =

Let i=2. Then j=1, 2, and k=4, 5. Then, pii(a, B, 7) are given by

using ¢, d as follows:

i k] p¥a By
114]c¢

5| pu—c
4\d

5| pn—d

2

211
212
212

Let ¢=3. Then j=1, k=5.
Let i=4. Then j=4, 5. Then the possibilities of k£ are k=1, 2, 3. Then

pieCa, B, 1) are given by using e, f as follows:

‘ i ‘j ‘k ‘ pis(a, B, 1)
414]1]e

41412 e

41511\ f
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r
4522f1

415131

Let ¢=5. Then j=4,5. Then the possibilities of k are k=0, 1, 2.

Then, pia(a, B, 7) are given by using g, % as follows:

ik pla By

514,01
51411 |g
.
54221g
5/5|1|h
.
5522h

From the above, we have the following:

k| plita, 8,7
511

i

— RN N = = O .

NN

[

BT[N NN DN == = = |
—_

i LN IR T S B e B e I B e I B
[}

AN
AN
o
|
\
®
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4

4

5

5

1

2

\
—_
\
Q

oy S ofx @
|
>

Second step: Using

the roles of 7, kK Then we have the following:

the above table, for given i€ {0, ..., 5} we change

.

i k] p¥a 87

4

AR [WIN NN N = == == O

R LY AN LY, N, T I SO S B, B B, [ I SN SN AN

DN B =N =N =D = O W N ==

N

[\

N
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.
4252f1
41351
5(0(411
5|/1|4|g
5(1(5]h
’
52421g
7
5252h

In this table, we consider pi. Then we have the following:

Therefore, we have the following:

i | k] pla By

ol1]al1

1lo/s5]1

1114 a
1|1|5]|pi—a
1124 é;fafl
1215 pbf%%+a+1
1341
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2[1]4]c
211 pllzc
ks
2(2]4] e
225p§r%+c
1]s]1
4lal1]e
442%—@
451%—2
Tkl
7_7+_
45222e1
41531
01
g
.
sl4]2] 5-1-g
k.
515/ 1] 59
7’k1
AT
5|5]2] 55ty

Last step: Using the above table, we change the roles of 4, j, k. Then we

have the following:

.

‘ j \ k \ pis(a, B, 7)

5

1

1

e T N e}

0
1

1
a
c

S

1
pu—a

(949)
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152 pu—c
115311

k.

KT
24| 5

k.
2(4(2| 5
2501 pi f%£+— 1
21502 ph 1234—c
3lal1]1
41051
4al1]4]e
411|5|¢g
4204 L=

28
4l2]s5|o—1-

: g

k.
siuja)

k.
siifs| 5

Tkl

R T
24| g5 te

Tkl

r_fg
s12]s| 57
s030al1

In this table, we consider pj~. Then we have the following:

c:%*afl,
ko
g B .

200 (950)



Nonsymmetric spin models of index 2 on association schemes of small classes

Therefore, we have the assertion.
Using Lemma 15, we calculate (2) in the below:

Since pli#0, we choose three points «, 8, Y& X such that
(a, BER, (B, )ER(a, 7)ER-.

Then we have the following:

Lemma 16. The triple-intersection numbers Q.s,, €. defined by Lemma 15

are triply-regular, and

1
_ Dn

Aopr = 2 )

- Eﬂ(to“‘!’b) (toﬂfe) (toitl)z
26, (t1+)' (1 —e)

Copr—

Proof. LetaeY;, BEY,, y& Y5 in (18). Then

y Ala, A, y)+ Ala, pAB, y)

<2> — — T T
vy By vwn B (ry
-y B(a, Y)BB, y) y B(a, BB, v) —op bt
yEY C(')’, y) =7 C(T? y) tf
Bla, BB, ) 4
= —p) DBV Y _op
q;Y C(?’, y) t52
¥ B(a, ) BB, y) __ph
= Clny ts
— (21).
From this calculation, we have
A(e, Yy)A B, y) 0, (28)
vy B,y
B(a, ) BB, ) £
R e A 29
y;y C(Ty y) ts (29)
On the other hand, we calculate (27) by using Lemma 15:
(951) 201
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i tit; t
QN <= ), pisle, B, P—L=2DF
0,7, k=0,1,2,3,4,5 Uk ts
— Y pia g il U —2D—
1,7=0,1,2,3 Lk i,j=4,5 4

=4,5 k=0,1, 2 3
Combining (28) and (29), we have the next correspondence:

Al PAB Y _ Y a8 7)%20’

= BT(T, y) 01,23
(30)
B(a, y)B(B, y) h "
LYY pl e " (a, ) _2D—
y;K C(r, y> l‘5 ]Z b b t4
/c 0,1, 2 3
(31)

By Lemma 15, we have

ik tit;
(30) &= Z ﬁm(&, B, 7)T

i, j=0, 1, 2, 3
Py

tity

k
= aaﬁ)’ + (1711 Cla57> < 21 — Qagy— 1>

+<p}2 ki +aa5,+1> hi |

vt )i
(

2
2
<p12 ki +aa5,+1> hi | 72*&+aa57+1>tf2

s 2 ‘i
<p22 /Q+/;aaﬂ,l>i
:ai—f— <pil—au,e,>§—‘j+ <%_am_ 1) th
<pu K +au5,+1> t;’f +<%—aaﬁ,—1>t;—f2
<p12 K +aaﬁ,+1> t;f +<%—%+am+1> tj
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IR A
<p 2+2 et 1>t4

*(2&157 pu) +(2k1 217}2*4@41,37*

+ (/szklfpéz‘I‘ZClaﬁf‘FZ)%
4

— (Zda57+p11) <7*2 t;tz L; >

(ti—1)

4

= <2aaﬂ7 pu)
=0.

Since t,# t,, we have

gD
aBy 2 .
LHS of (31)

i (m i [k t
— 2 a7i+ aBy : = apy =
<eﬁt1 <2 eﬁ)tz <2 e I,

=2(| 2e *ﬁ LZJr ﬂ*e *ﬂ+k —euT1 Li*tfl
o)t 2 o9 g W Lo

o 2 _ﬁ kl 1

72t4<<2€aﬂ7 9 >t1 +< 28&,37+].> 4 t0>

o2 IR YAR SR SR U S

_2':4((28‘“’ 2><t1 tz>+t2 to>

& RHS of (31)
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Therefore, we have

. RV(L 1\, 1 1)
"“‘<<2‘Z“‘” 2><t. ;:2)% to>*D“'

From this equation, we have

- Etl<t0+tl)(t0t17€) (l‘oftl)z

Coapr— 2
2wt + ) (ti—e)

Since (2) holds for any a, 8, Y& X, (2) is written by

W, r)

WB, ) Wiy, 2)
=D 32
1;;( W(a, ) WB, ) Wa, 7). (32)
AB, B (1, v AB B (o, v
2) &= — +
-y BB, yC(ry) y BBYChry) o U
yeY B(a, y) yEY: B(a, y) tits
BB, wC(r, y) D
= ) DRI o o=
yEZY B(a, v) t
— VBB wChy D
= Bla,y) t
Therefore, we have
AB B (o, v
=0, 33
ygx Ala, y) (33)
BB, yC(,y) D
=e S L= 34
= Bla,y) L (34)
1 1 kZ kl
(33) P aaﬁy_pn+aa37_p22+7_7+aa,@7+1 4
kl 1 ﬁi t2t4
+ <7 Aapy 1 p12+ 2 aaﬁy+ 1> h
2 K uty
+<7 Aopy 1 p12+ 9 aa5,+1> 5
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= (kz*/ﬁ *plll 7p;z+4daﬁy+ 2) s

123 11t
+(kl—piz—z—zauﬁ,)%Jr(kl—piz—zaaﬁy—z) t
1

2

2
Lt —t)

:<pi1_2aaﬁy) his

=0.
Since ¢,# t,, we have

o
5

Aopr—

k. n n ki
<34) — 2<*l‘o+<2€a5777>t1+<?7eaﬁy*?+7*ea57+l>l‘z>

_,p b 2D
tiits t

> 72<t0+ <%72€aﬂy> ti+ <2€a577 1 7%) t2> - ZL;D

k k D
— <t0+ <71_26aﬁ7> b+ <2ezxﬁy_ 1 _71> t2> - _Tl

From this equation, we have

- et (to+ 1) (ot —€) (to_t1)2
26, (ti+ ) (t—e)

Copr—
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